

动态倾角测量模块

FSS-AHRS20XS-X 产品手册

特性

战术级 MEMS IMU

- 5.0°/h 陀螺仪零偏不稳定性
- 40 μg 加速度计零偏不稳定性

抗干扰动态倾角算法

- 分辨率 0.01 度
- 低动态精度<0.8°@rms

独立转台标定

● 独立标定每个模块:灵敏度、零偏、非正交误差

高强度工况耐受

- 超强冲击耐受: 2000g(0.5ms, 半正弦, 3 轴)
- 超强振动耐受: 10g(10~2KHz, 3 轴)
- 全温环境稳定工作: -40°C ~ 85°C
- 100%磁屏蔽

实时而灵活的数字接口、体积小巧

- 高达 100Hz 的可配置输出采样率
- 支持 CAN 接口
- 支持 RS-485 接口
- 支持 TTL 接口
- 支持 RS-232 接口

产品概述

AHRS20XS-X是原极科技基于工业级IMU 平台,针对工程机械。智能机器人等领域 推出的一款动态倾角测量传感器。所有模块出厂前都配置超宽温域的精细化温补与独立标定,确保模块的一致性和稳定性。内置基于扩展卡尔曼滤波的姿态融合算法,有效抑制动态干扰对姿态精度的影响,保证姿态精度的稳定性。

应用领域

- 工程机械:挖机,无人叉车,云梯等
- 智能机器人
- 水下机器人

在标准性能及输出参数的基础上,原极也为您的特殊需求提供**定制化软件及 LOGO定制服务**,在产品上助您一臂之力!

目录

1. 性能参数	1
2. 型号说明	2
3. 外形结构	3
4. 电气特性	5
4.1 最大耐受值	5
4.2 工作条件	5
4.3 接口定义	
5. 升级功能	7
5.1 CAN 版本固件升级	7
5.2 RS-485/RS-232/TTL 版本固件升级	
6. 用户参数功能	8
7. 通信协议	
7.1 CAN 通信协议	
7.1.1 通讯参数	9
7.1.2 标准帧格式	9
7.1.3 CAN 参数配置	
7.2 串口通信协议	14
7.2.1 串口接口参数	
7.2.2 数据包格式	
7.2.3 常用 AT 指令	
7.2.4 数据流帧——AHRS 数据	
7.2.5 命令模式 GET 输出——系统状态	
7.2.6 命令模式 GET 输出——读取参数	
7.2.7 命令模式 SET 指令	
7.2.8 命令模式输出——用户命令响应	
7.2.9 坐标系设置功能	
7.2.10 串口连接常见问题	
8. 坐标系定义	37
9. CRC 查表法计算	38
10. 选配附件	40
11. 更新记录	41

1. 性能参数

AHRS20XS 产品性能指标如下表 1 所示:

表 1 性能指标

传	感器性能			
角度测量范围	俯仰角: ±80° 横滚角: ±180°			
角度重复性	<0. 05°			
角速度测量范围	±450°/s			
分辨率	0. 01°			
动态精度1	0.8°			
加速度测量范围	±6g			
更新率	100Hz			
T E	电气特性			
电压输入	9V-32V			
功耗	0. 1W-0. 24W			
接口	CAN/RS-485/RS-232/TTL			
物理特性	(AHRS200S-X)			
接头型号	GX12 - 4 芯(公头)			
产品尺寸	37. 6*55*24mm			
防水等级	IP68			
物理特性	(AHRS20XS-A)			
接头型号	M12 航空连接器 5 pin(公头/母头)			
产品尺寸	AHRS201S: 47*85*24mm AHRS202S: 47*96.5*24mm			
防水等级	IP68			
	不境温度			
工作温度	−40°C~85°C			
存储温度	-40°C~85°C			

注 1: 低动态农机场景下,姿态误差 RMS 值。

2. 型号说明

图 1 型号说明

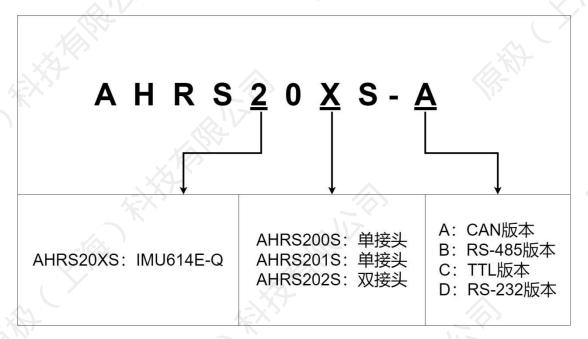
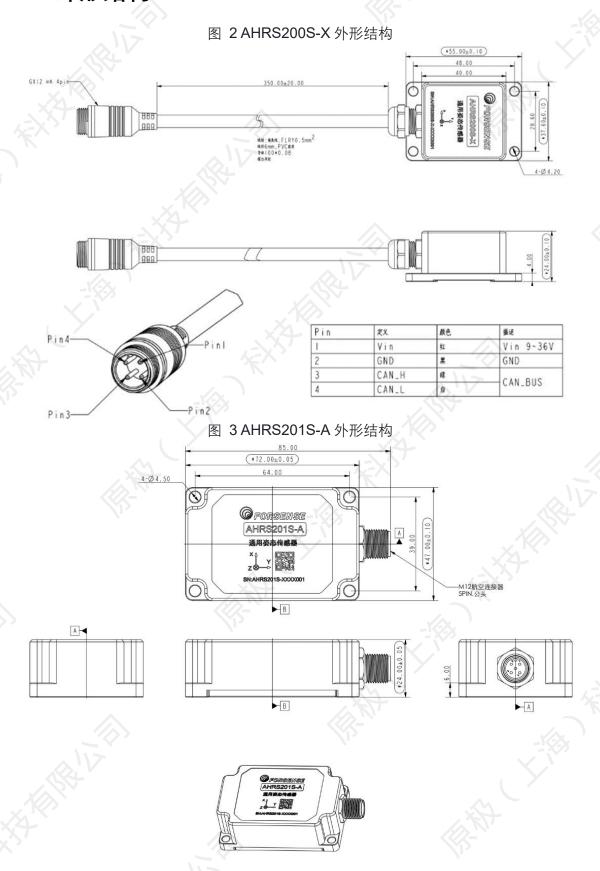
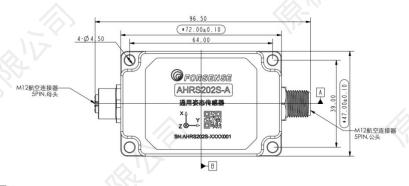
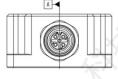



表 2 型号说明

名称	版本类型	含义	支持最大更新率
(1)	А	CAN 版本	200 Hz
ALIDEOOC	В	RS-485 版本	500 Hz
AHRS200S	С	TTL 版本	1000 Hz
	D	RS-232 版本	500 Hz
AHRS201S	А	单接头版本	200 Hz
AHRS202S	А	双接头版本	200 Hz




3. 外形结构

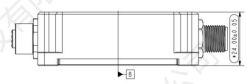
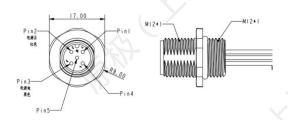
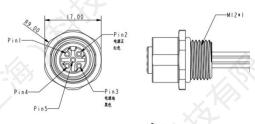




图 4 AHRS202S-A 外形结构





4. 电气特性

4.1 最大耐受值

表 3 最大额定绝对值

参数	符号	范围	单位
供电电压	VCC	9 to 36	V
电源地	GND	-	-
使用温度	Tot	-40 to 85	$^{\circ}\mathbb{C}$
存储温度	Tstg	-40 to 85	$^{\circ}$ C

4.2 工作条件

表 4 工作条件

	10	· 工 [F 水 []			
参数	符号	最小值	典型值	最大值	单位
供电电压	VCC	9	12	36	V
VCC 最大纹波	Vrpp	0		40	mV
AHRS200S-A 功耗	Р		0.24		W
AHRS200S-B 功耗	Р		0.16		W
AHRS200S-C 功耗	Р		0.1		W
AHRS200S-D 功耗	Р		0.1		W
AHRS201S-A 功耗	Р		0.17		W
AHRS202S-A 功耗	Р		0.18		W
使用温度	Tot	-40		85	$^{\circ}$
存储温度	Tstg	-40		85	$^{\circ}$

4.3 接口定义

表 5 AHRS200S-A 接口定义

		/ 7//
PIN	定义	描述
1	VIN	9-36V 直流输入
2	GND	电源地
3	CAN_H	CAN DUS
4	CAN_L	CAN_BUS

注: CAN 通信波特率为 500Kbps, 内置匹配电阻 120 欧;

表 6 AHRS200S-B 接口定义

PIN	定义	描述
1	VIN	9-36V 直流输入
2	GND	电源地
3	DATA A	RS-485
4	DATA B	K5-465

注: 内置匹配电阻 120 欧;

表 7 AHRS200S-C 接口定义

PIN	定义	描述
1	VIN	9-36V 直流输入
2	GND	电源地
3	RXD	LVTTI
4	TXD	LVTTL

表 8 AHRS200S-D 接口定义

PIN	定义	描述
1	VIN	9-36V 直流输入
2	GND	电源地
3	RXD	DS 222
4	TXD	RS-232

表 9 AHRS20X-A 接口定义

PIN	颜色	定义	描述
1	屏蔽	PE	保护地
2	红	VIN	9-36V 直流输入
3	黑	GND	电源地
4	绿	CAN_H	CAN DUO
5	白	CAN_L	CAN_BUS

5. 升级功能

5.1 CAN 版本固件升级

使用原极 IMU 测试上位机——选择固件升级——打开固件——选择 CAN 接口升级——设置升级后的固件波特率——点击自动升级。

图 5 CAN 版本上位机升级界面

5.2 RS-485/RS-232/TTL 版本固件升级

使用原极 IMU 测试上位机——选择固件升级——打开固件——点击自动升级。

图 6 RS-485/RS-232/TTL 版本上位机升级界面

6. 用户参数功能

使用原极 IMU 测试上位机,用户可配置更新率和滤波器等值;

图 7 用户参数配置界面

7. 通信协议

7.1 CAN 通信协议

基于 STM32 的 CAN 主机读取驱动示例:

https://data.forsense-imu.com/page/download.html

7.1.1 通讯参数

接口形式: CAN, 标准帧

CAN 速率: 250Kbps~1Mbps (可配置)

7.1.2 标准帧格式

表 10 CAN 标准帧格式 101

标准帧 ID	1 2 3 4	5 6 7 8
0x65+节点	ROLL	PITCH

表 11 CAN 标准帧格式 102

标准帧 ID	1	2	3	4	5	6	7	8
0x66+节点		YA	W_			G	Sx	

表 12 CAN 标准帧格式 103

标准帧 ID	1 2	3	4	5	6	7	8
0x67+节点	G	Gy				Sz	

表 13 CAN 标准帧格式 104

标准帧 ID	1	2	3	4	5	6	7	8
0x68+节点	Ax					A	y	

表 14 CAN 标准帧格式 105

标准帧 ID	1	2	3	4	5	6	7	8 -1
0x69+节点	Az			TE	MP	INE	DEX	

注 1: 姿态角、陀螺、加速度计数据表示为 float, 温度、计数值数据表示为 int16

注 2: TEMP 单位为 100^* ℃,陀螺仪输出单位为°/s ,加速度计输出单位为 g,姿态输出单位为度

7.1.3 CAN 参数配置

7.1.3.1 配置 CAN 波特率

配置 CAN 波特率,发送指令:

ID=0x619, DATA=0x20 0x21 0x22 0x23 0xXX 0x00 0x00 0x00

IMU 应答如下:

ID=0x519, DATA=0xXX 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

查询 CAN 波特率,发送指令:

ID=0x619. DATA=0x20 0x21 0x22 0x23 0x0A 0x00 0x00 0x00

IMU 应答如下:

ID=0x519, DATA= 0xXX 0x0A 0xFF 0xFF 0xFF 0xFF 0xFF

其中:

XX=01 波特率为 250Kbps

XX=02 波特率为 500Kbps

XX=03 波特率为 1000Kbps

7.1.3.2 配置节点 ID

默认节点为 65,设置节点 ID 为 0X0102, 发送指令:

ID=0x61A, DATA=0x30 0x31 0x32 0x33 0x01 0x02 0x00 0x00

IMU 应答如下:

ID=0x51A, DATA=0x01 0x02 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

7.1.3.3 查询版本号

发送指令

ID=0x618, DATA=0x10 0x11 0x12 0x13 0x00 0x00 0x00 0x00

IMU 应答如下:

7.1.3.4 查/设置终端电阻

去掉终端电阻,发送指令:

ID=0x61B, DATA=0x10 0x11 0x12 0x13 0x01 0xFF 0xFF 0xFF IMU 应答如下:

ID=0x61B, DATA=0x10 0x11 0x12 0x13 0x02 0xFF 0xFF 0xFF IMU 应答如下:

ID=0x51B, DATA=0x02 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

7.1.3.5 设置输出频率

设置输出频率,发送指令:

ID=0x61C, DATA=0x10 0x11 0x12 0x13 0xXX 0xFF 0xFF 0xFF IMU 应答如下:

ID=0x61C, DATA=0x10 0x11 0x12 0x13 0x0A 0xFF 0xFF 0xFF IMU 应答如下:

XX=01 输出频率为 1HZXX=02 输出频率为 10HZXX=03 输出频率为 50HZXX=04 输出频率为 100HZXX=05 输出频率为 200HZ

7.1.3.6 查/设置横滚俯仰取反

设置横滚俯仰取反,发送指令:

ID=0X61D,DATA=0X10 0X11 0X12 0X13 XXXX 0XFF 0XFF 0XFF IMU 应答如下:

ID=0X61D,DATA=0X10 0X11 0X12 0X13 0X0A 0XFF 0XFF 0XFF IMU 应答如下:

XXXX=0X00 横滚角与俯仰角均不取反

XXXX=0X01 横滚角与俯仰角均不取反

XXXX=0X10 横滚角取不取反,俯仰角取反

XXXX=0X11 横滚角取不取反,俯仰角取反

7.1.3.7 查/设置滤波器截止频率

设置滤波器截止频率,发送指令:

ID=0X61E,DATA=0X20 0X21 0X22 0X23 XXXX 0XFF 0XFF 0XFF IMU 应答如下:

ID=0X61E,DATA=0X20 0X21 0X22 0X0A 0XFF 0XFF 0XFF 0XFF 0XFF IMU 应答如下:

XXXX=0X44 截止频率 10HZ

XXXX=0X66 截止频率 20HZ

XXXX=0XAA 截止频率 40HZ

XXXX=0XBB 截止频率 47HZ

7.1.3.8 查/设置坐标系

设置坐标系,发送指令:

ID=61F,DATA=0X30 0X31 0X32 0X33 XXXX 0XFF 0XFF 0XFF IMU 应答如下:

ID=0x61F, DATA=0x30 0x31 0x32 0x0A 0xFF 0xFF 0xFF 0xFF 0xFF IMU 应答如下:

XXXX=0X65 默认朝向

CAN 配置的是十六进制, 7.2.9 章节里面显示的是十进制, 具体朝向设置参考手册 7.2.9 章节

7.1.3.9 关闭/扣除姿态角

设置关闭扣除姿态角或扣除姿态角,发送指令:

ID=0x620, DATA=0x10 0x11 0x12 0x13 XXXX 0xFF 0xFF 0xFF IMU 应答如下:

ID=0x520, DATA=XXXX 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

查询是否扣除姿态角设置,发送指令:

ID=0x520, DATA=XXXX 0x0A 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

其中:

XXXX=0X01 扣除姿态角 XXXX=0X00 没有扣除姿态角

7.1.3.10 保存指令

发送指令:

ID=0x6FF, DATA=0x10 0x11 0x12 0x13 0xFF 0xFF 0xFF 0xF IMU 响应如下:

7.2 串口通信协议

基于 QT、ROS 和 STM32 的串口协议示例:

https://data.forsense-imu.com/page/download.html

串口通信具有两种模式:数据流模式(Stream Mode)和命令模式(Command Mode), IMU 在上电初始化完成后,根据参数配置的模式值进入对应模式。

数据流模式:以固定频率周期性输出 AHRS 数据。

命令模式:在此模式下,停止周期性输出,用户通过发送命令与 IMU 进行通信,可通过 GET 指令获取传感器数据、状态、参数等,也可配置 IMU 的参数。

7.2.1 串口接口参数

表 15 串口接口参数

	传输速率范围	115200bps ~ 1.5Mbps
	默认传输速率	115200bps
E I	开始位	1 bit
	数据位	8 bits
	停止位	1 bit
	奇偶校验	无

7.2.2 数据包格式

IMU 输出和用户输入的数据包结构组成如下:

表 16 IMU 输出和用户输入数据结构

偏移量	数据类型	名称	描述
0	uint8	帧头 1	IMU 输出帧头: 0xAA, 0x55
1	uint8	帧头 2	用户输入帧头: 0x55, 0xAA
2		ID 低位	串口通信帧 ID 的低位字节
3	uint16	ID 高位	串口通信帧 ID 的高位字节
4	- 1	数据长度低位	串口通信帧长度的低位字节, length 为 payload 所占字节数, 即为 n
5	uint16	数据长度高位	串口通信帧长度的高位字节, length 为 payload 所占字节数, 即为 n
6	uint8	Payload (n 个字节)	数据负载
6+n		CRC_CEHCK (32 位数据低字节)	
7+n	II: 100	CRC_CEHCK (32 位数据中低字节)	
8+n	Uint32 8+n	CRC_CEHCK (32 位数据中高字节)	CRC 校验
9+n		RC_CEHCK (32 位数据高字节)	

注 1: 数据以小端格式传输, 低字节在前, 高字节在后

注 2: crc32 的初值为 1, CRC 计算不包括本身的本帧所有数据, 查表计算法见文档末尾

7.2.3 常用 AT 指令

7.2.3.1 停止当前数据流输出

指令: AT+SETNO\r\n

应答: OK\r\n

可以停掉当前数据流(不改数据流参数),输出 OK 后表示可以进行下一步操作。

如果未响应,可以继续发送 AT\r\nAT+SETNO\r\n 命令直到输出 OK。

开启数据流输出

指令: AT+SETYES\r\n

7.2.3.2 查询版本号

指令: AT+VERSION\r\n

应答: SW_VERSION 固件版本

HW_VERSION 硬件版本 BOARD_VERSION 底板版本

OK

7.2.3.3 查询用户参数

指令: AT+CONFIG\r\n

应答: BAUD_RATE 当前串口波特率

ORIENT 当前坐标系

IMU_ODR当前 IMU 的输出频率STREAM_MODE1当前串口 1 的数据流模式

STREAM_MODE2 当前串口 2 的数据流模式 STREAM MODE3 当前串口 3 的数据流模式

LP_CONFIG_REG 当前 IMU 的滤波

OK

7.2.3.4 设置和查询 ODR

例:设置输出频率 ODR 为 50hz 指令: AT+SET_ODR=50\r\n

应答: IMU_ODR:50

OK

查询 IMU 当前的 ODR

指令: AT+GET_ODR\r\n

应答: IMU_ODR:50

OK

7.2.3.5 设置和查询坐标系

例:设置 IMU 坐标系为右前上,具体坐标系参考 7.2.9 章节

指令: AT+SET_ORIENT=101\r\n

应答: orientation:101

OK

查询 IMU 当前坐标系

指令: AT+GET_ORIENT\r\n

应答: orientation:101

OK

7.2.3.6 设置和查询波特率

例:设置 IMU 的波特率为 115200

指令: AT+SET BAUD=115200\r\n

应答: OK

查询 IMU 当前波特率

指令: AT+GET BAUD\r\n

应答: BAUD_RATE:115200

OK

7.2.3.7 设置横滚和俯仰取反

AT+SET_ATT_ORIENTATION=00\r\n 横滚俯仰不取反

AT+SET_ATT_ORIENTATION=01\r\n 横滚取反,俯仰不取反

AT+SET_ATT_ORIENTATION=10\r\n 横滚不取反,俯仰取反

AT+SET_ATT_ORIENTATION=11\r\n 横滚俯仰均取反

7.2.3.8 设置和查询滤波器

例:设置 IMU 的滤波为 20hz

指令: AT+SET_LPF=102\r\n

应答: LP_CONFIG_REG:102

OK

查询 IMU 当前滤波

指令: AT+GET_LPF\r\n

应答: LP_CONFIG_REG: 102

OK

表 17 低通滤波值和 AT 指令对应数值

序号	IMU 低通滤波值	AT 指令对应的值
1	1 -	17
2	2	34
3	5	51
4	10	68
4	15	85
5	20	102
6	25	119
7	30	136
8	35	153
9	40	170
10	47(无滤波)	187

7.2.3.9 设置初始航向角

例:设置初始航向角为 180 度(只支持整数)

指令: AT+SET_HEADING=180\r\n

应答: AT+SET_HEADING=180

7.2.3.10 保存参数

指令: AT+SAVE\r\n

应答: OK

7.2.4 数据流帧——AHRS 数据

表 18 串口 AHRS 数据格式

	帧头	帧头	ID	length	payload	帧尾
数据类型	uint8	uint8	uint16	uint16		uint32
编码	0xAA	0x55	0x0002	0x002C	A1	crc32

注 1: 最大输出更新率不大于 200Hz@115200bps

表 19 串口 A1 负载数据格式

(offset	名称	数据类型	单位	描述
	0	timer	uint32	μs	时间标
	4	pitch	float	0	俯仰角
	8	roll	float	0	横滚角
	12	yaw	float	0	航向角
	16	ax	float	g	X 轴加速度
	20	ay	float	g	Y轴加速度
	24	az	float	g	Z 轴加速度
	28	gx	float	°/s	X 轴角速度
	32	gy	float	°/s	Y 轴角速度
	36	gz	float	°/s	Z 轴角速度
	40	temp	float	$^{\circ}\mathbb{C}$	IMU 芯片温度

例: 获取到 AHRS 数据流:

AA 55 02 00 2C 00 6D 89 16 05 8F C2 65 40 14 AE 07 BF 5C 0F B2 43 25 06 81 3D BC 74 13 3C 60 E5 80 BF EC 51 38 BD 0A D7 A3 BB CD CC CC BC D7 A3 EE 41 0C BF 84 80

解析如下:

表 20 串口 A1 获取到 AHRS 数据流

描述	原始值	解析值	描述	原始值	解析值
ID	0200	02	Y 轴加速度	BC74133C	0.009g
长度	2C00	44	Z 轴加速度	60E580BF	-1.007g
时间标	6D891605	85363053	X 轴角速度	EC5138BD	-0.045°/s
俯仰角	8FC26540	3.59°	Y 轴角速度	0AD7A3BB	-0.005°/s
横滚角	14AE07BF	-0.53°	Z 轴角速度	CDCCCCBC	-0.025°/s
航向角	5C0FB243	356.12°	imu 芯片温度	D7A3EE41	29.83℃
X 轴加速度	2506813D	0.063g	crc32 校验	0CBF8480	2156183308

7.2.5 命令模式 GET 输出——系统状态

表 21 串口系统状态数据格式

	帧头	帧头	ID	length	payload	帧尾
数据类型	uint8	uint8	uint16	uint16	04	uint32
编码	0xAA	0x55	0x00FF	N	S1	crc32

注 1: 不同 IMU 型号,此帧的长度会有差别,都代表 S1 的长度,需要根据 imu 型号确认。

表 22 串口 S1 负载数据格式

offset	名称	数据类型	描述
0	Software_ver	uint32	软件版本号
4	Hardware_ver	uint32	硬件版本号
8	rev	uint16	保留字节
10	sn0	uint32	第一 SN 号
14	sn1	uint32	第二 SN 号
18	sn2	uint32	第三 SN 号
22	Board_version	uint32	底板版本号
26	Rev[16]	Uint8	后续都是保留字节

注 1: 不同 IMU 型号,后续保留字节也不同,需要根据 imu 型号进行确认,IMU614E 为 16 字节。

例: 获取系统状态

响应数据: AA 55 FF 00 2A 00 1F 39 03 00 65 6F 01 00 50 83 30 33 35 55 34 50 15 FF 8F 5F FF F5 0 83 FF 1F 29 00 00 00 00 E0 00 07 10 17 08 50 D0 37 10 3B 7A C3 00 02

根据响应数据,解析得到软件版本号 211231(1F 39 03 00),硬件版本号 94053(65 6F 01 00)。

7. 2. 6 命令模式 GET 输出——读取参数

表 23 串口参数输入数据格式

	帧头	帧头	ID	length	payload	帧尾
数据类型	uint8	uint8	uint16	uint16	D4	uint32
编码	0x55	0×AA	0x0006	0x0018	P1	crc32

表 24 串口参数输出数据格式

	帧头	帧头	ID	length	payload	帧尾
数据类型	uint8	uint8	uint16	uint16	D1	uint32
编码	0xAA 0x55	0x55	0x7530	0x0018	P1	crc32

注 1: 读取参数时, IMU 会将数据流关闭,设置完毕后需要重新开启数据流。

表 25 串口 P1 负载数据格式

offset	名称	数据类型	描述
0	Param1	float	获取的参数(输入数据可无视)
4	Param2	float	保留, 默认为 0
8	Param3	uint32	设置的参数索引
12	Param4	uint32	保留,默认为 0
16	Param5	Int32	保留,默认为 0
20	Param6	Int32	保留,默认为 0

表 26 串口 P1 负载参数索引表

Param3	Param1	单位
3	串口输出波特率,支持以下波特率 115200 230400 460800 921600 1500000	bps
4	坐标系朝向(见表 33 坐标系朝向对应表)	
8	X 轴陀螺零偏标定结果,GYRO_X_OFF	°/s
9	Y 轴陀螺零偏标定结果,GYRO_Y_OFF	°/s
10	Z 轴陀螺零偏标定结果,GYRO_Z_OFF	°/s
21	AHRS 输出频率, 默认 100Hz	Hz
31	内部滤波器配置,定义同 SPI 的 FILTER_CTRL 对照表	

例: 获取 AHRS 输出频率

根据响应数据,解析得到输出频率为 50hz (00 00 48 42)。

7.2.7 命令模式 SET 指令

表 27 串口输入命令格式

	帧头	帧头	ID	length	payload	帧尾
数据类型	uint8	uint8	uint16	uint16	54	uint32
编码	0x55	0xAA	CMD	0x0018	R1	crc32

注 1: CMD 与 R1 关系, 详见 R1 负载参数索引表

表 28 串口 R1 负载数据格式

offset	名称	数据类型	描述
0	Param1	float	设置的参数
4	Param2	float	保留, 默认为 0
8	Param3	uint32	设置的参数索引
12	Param4	uint32	保留, 默认为 0
16	Param5	Int32	保留, 默认为 0
20	Param6	Int32	保留, 默认为 0

表 29 串口 R1 负载参数索引表

CMD	Param1	Param3	描述
1	0	0	触发获取一次系统状态数据
2	0	0	触发获取一次 AHRS 数据
3	<mode></mode>	0	设置输出模式: Mode=1, 数据流输出 AHRS Mode=100,禁止数据流模式,进入 COMMAD 模式
5	0	0	保存当前参数到 FLASH
6	0	<value></value>	读取参数, value 为要读取的参数索引, 即 P1.index, 详见串口应答性输出-参数读取例如需读取 AHRS 输出频率(ODR),则设置 value=21例如需读取串口波特率,则设置 value=3例如需读取内部滤波器,则设置 value=31例如需读取坐标系方向,则设置 value=4
9	0	0	执行软件重启
14	<value></value>	3	设置串口输出波特率,单位 bps value 的有效值为:

	TO THE LOCAL PROPERTY OF THE PARTY OF THE PA		115200, 230400, 460800, 921600, 1500000 value 为其他值时, 默认采用 115200bps 设置波特率参数后, 需要重启才能生效。不断电的设置流程: 设置波特率, 保存参数到 flash, 执行软件复位
14	<value></value>	21	设置周期性 AHRS 数据输出频率,单位 Hz value 的常用值为: 1,10,50,100,200,500,1000 输出频率与串口波特率的推荐对应关系 1000Hz: 921600bps 500Hz: 460800bps 250Hz: 460800bps 200Hz: 460800bps 100Hz: 115200bps
14	<value></value>	31	内部滤波器配置, 定义同 SPI 加速度计和陀螺仪滤波器配置, 默认 0xBB, 即 47Hz
14	<value></value>	4	设置 IMU 坐标系朝向, value 的取值范围为 101~124, 具体坐标系朝向对应关系见表 33

注 1: 请注意本表中数值均为十进制

注 2: 可使用上位机命令生成器功能生成对应命令发送,使用方法见本手册上位机使用部分

如执行开启 AHRS 输出:

CMD ID 填入 3,参数 1 填入 1,生成的十六进制数组可以填入串口助手或程序数组中发送给 IMU。

图 8 开启 AHRS 输出

MD ID:	3				
数:					
	1	2	0	3	0
	0	5	0	6	0
	生成	命令		发:	送命令

7.2.8 命令模式输出——用户命令响应

表 30 设置参数串口响应数据格式

	帧头	帧头	ID	length	ACK	Param3	帧尾
数据类型	uint8	uint8	uint16	uint16	uint16	uint16	uint32
编码	0xAA	0x55	0x753D	0x0004	0x7534	参数索引	crc32

表 31 保留参数串口响应数据格式

	帧头	帧头	ID	length	ACK	result	帧尾
数据类型	uint8	uint8	uint16	uint16	uint16	uint16	uint32
编码	0xAA	0x55	0x753D	0x0004	0x0005	0x01	crc32

表 32 串口用户命令响应数据格式

	帧头	帧头	ID	length	command	result	帧尾
数据类型	uint8	uint8	uint16	uint16	uint16	uint16	uint32
编码	0xAA	0x55	0x0064	0x0004	命令 ID	0x01	crc32

例:设置串口输出波特率 115200

输入数据:

响应数据: AA 55 3D 75 04 00 34 75 03 00 A7 98 2A 54

设置周期性 AHRS 数据输出频率 100hz

输入数据: 55 AA 0E 00 18 00 00 00 C8 42 00 00 00 15 00 00 00 00 00 00 00 00

00 00 00 00 00 00 0A 2B 2C 8D

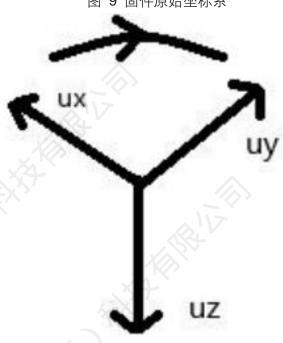
响应数据: AA 55 3D 75 04 00 34 75 15 00 70 2D B2 48

保存当前参数到 FLASH

00 00 00 00 00 00 C9 2F E6 32

响应数据: AA 55 3D 75 04 00 05 00 01 00 5A CF B1 7C

设置输出模式为 AHRS 数据流


00 00 00 00 00 00 52 D8 8E E8

响应数据: AA 55 64 00 04 00 03 00 01 00 E7 87 E3 AD

7.2.9 坐标系设置功能

设置固件坐标系,在上位机当中显示对应固件设计坐标系图 9 固件原始坐标系

按照上图规则,当 x 和 y 轴确定之后,z 轴确定。Z 轴垂直于 X 轴到 Y 轴的面。

X/Y/Z 三轴的朝向总共有二十四种,如下表所示:

表 33 坐标系朝向对应表

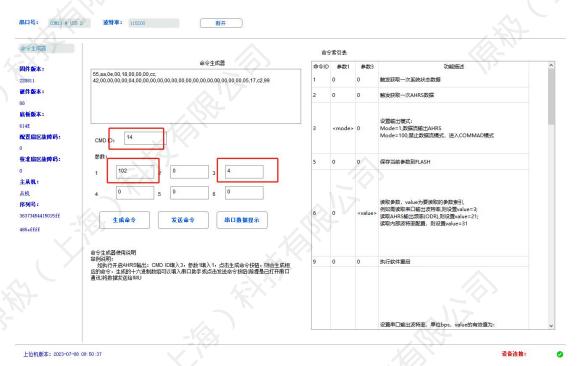
卓	期向 (value)	XAxis	YAXis	ZAxis	说明
	101	+Ux	+Uy	+Uz	0 pg 85 85 85 85 85 85 85 85 85 85 85 85 85
	102	-Ux	-Uy	+Uz	Activities and the second seco

IR NIX III 4:				
103	-Uy	+Ux	+Uz	
104	+Uy	-Ux	+Uz	
105	-Ux	+Uy	-Uz	Portion 1
106	+Ux	-Uy	-Uz	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
107	+Uy	+Ux	-Uz	

//////////////////////////////////////				
108	-Uy	-Ux	-Uz	
109	-Uz	+Uy	+Ux	
110	+Uz	-Uy	+Ux	AND STATE OF THE S
111	+Uy	+Uz	+Ux	
112	-Uy	-Uz	+Ux	THE REAL PROPERTY OF THE PARTY

113	+Uz	+Uy	-Ux	ARSTONS AND
114	-Uz	-Uy	-Ux	
115	-Uy	+Uz	-Ux	
116	+Uy	-Uz	-Ux	
117	-Ux	+Uz	+Uy	ESE-254 F ESIO SCHY 2013 SCHY

IS NIX III -	×			
118	+Ux	-Uz	+Uy	Fig. 34 SSES SEC
119	+Uz	+Ux	+Uy	BOOKS SHOTHAND WAS A
120	-Uz	-Ux	+Uy	
121	+Ux	+Uz	-Uy	FRISENSE AND
122	-Ux	-Uz	-Uy	PROSENSE LANGUAGE LAN


123	-Uz	+Ux	-Uy		-15
124	+Uz	-Ux	-Uy	FORSENSE AHRS: DOS-XI AMRS: DOS	

如何更改坐标系为 102 朝向:

CMD ID 填入 14,参数 1 填入 102,参数 3 填入 4,生成的十六进制数组可以填入串口助手或程序数组中发送给 IMU。

图 10 更改坐标系

如何读取坐标系朝向:

CMD ID 填入 06,参数 3 填入 4,生成的十六进制数组可以填入串口助手或程序数组中发送给 IMU。

图 11 读取坐标系

例: 设置坐标系为 115 朝向

输入数据:

响应数据: AA 55 3D 75 04 00 34 75 04 00 60 0E 6B 1B

参考表 30 解析得到参数索引为 04, 设置成功

读取坐标系:

根据表 24 与表 25 , 解析得到参数 1 为 115 (float) , 参数 3 为 04。即坐标系为 115 $global{1}$ 朝向

7.2.10 串口连接常见问题

1) IMU 的 RX 不能接 2 个主机 TX

串口的 RX 不能同时接 2 个 TX,所以如果需要连接原极上位机时,需要断开其与用户主机的串口通信,否则上位机只能接收到数据,不能发送命令给 IMU。如下图所示:

 IMU
 TX
 原极上位机

 IMU
 RX
 客户主机

注: IMU TX 可接多路 RX, RX 不可接多路 TX; IMU串口不可同时连接客户主机和原极上位机;

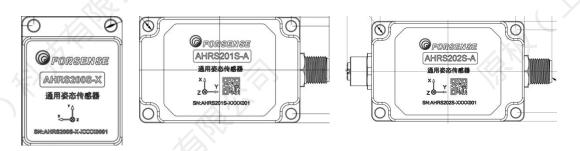
2) 获取不到版本号

检查串口线是否丢包,推荐使用 FT232 芯片的串口线, CH340、PL2303 数据线在高波特率时(>115200bps)会丢包

IMU可以预留另外一路串口专门连接原极上位机。

建议串口线直连,不建议串联,如 RS422 的接口接电脑,直接使用 RS422 转 USB 线,不要用 RS422 转 RS232+RS232Z 转 USB 线串联。

3) 上位机曲线显示卡顿


如果是 FT232 数据线,用系统管理员打开上位机,自动配置串口延时手动在设备管理器中配置串口延时。

8. 坐标系定义

图 13 坐标系示意图

本产品坐标系使用 前-右-下(FRD)坐标系, 欧拉角范围如下:

绕 Z 轴方向旋转: 航向角 Yaw 范围: 0°~360°;

绕 X 轴方向旋转: 横滚角 Roll 范围: -180°~180°;

绕 Y 轴方向旋转: 俯仰角 Pitch 范围: -90°~90°。

横滚、俯仰、航向角度示意图如下:

图 14 横滚、俯仰、航向角示意图

9. CRC 查表法计算

建议直接参考示例代码。

注 1: 数据以小端格式传输, 低字节在前, 高字节在后

注 2: crc32 的初值为 1, CRC 计算不包括本身的本帧所有数据

```
C++
                           crc32 tab [ ]
static const
               uint32 t
0 \times 000000000
              0x77073096,
                            0xee0e612c,
                                          0x990951ba,
                                                         0x076dc419,
                                                                       0x706af48f,
0xe963a535,
              0x9e6495a3,
                            0x0edb8832,
                                          0x79dcb8a4,
                                                         0xe0d5e91e,
                                                                       0x97d2d988,
0x09b64c2b,
              0x7eb17cbd,
                            0xe7b82d07,
                                          0x90bf1d91,
                                                         0x1db71064,
                                                                       0x6ab020f2,
0xf3b97148.
              0x84be41de.
                            0x1adad47d.
                                          0x6ddde4eb.
                                                                       0x83d385c7.
                                                         0xf4d4b551.
0x136c9856,
              0x646ba8c0,
                            0xfd62f97a,
                                          0x8a65c9ec,
                                                         0x14015c4f,
                                                                       0x63066cd9,
0xfa0f3d63,
              0x8d080df5,
                            0x3b6e20c8,
                                          0x4c69105e,
                                                         0xd56041e4,
                                                                       0xa2677172,
0x3c03e4d1,
                            0xd20d85fd,
                                          0xa50ab56b,
                                                                       0x42b2986c,
              0x4b04d447,
                                                         0x35b5a8fa,
                            0x32d86ce3.
                                          0x45df5c75.
                                                                       0xabd13d59.
0xdbbbc9d6.
              0xacbcf940,
                                                         0xdcd60dcf.
0x26d930ac,
              0x51de003a,
                            0xc8d75180,
                                          0xbfd06116,
                                                         0x21b4f4b5,
                                                                       0x56b3c423.
0xcfba9599.
              0xb8bda50f.
                            0x2802b89e.
                                          0x5f058808.
                                                         0xc60cd9b2,
                                                                       0xb10be924.
0x2f6f7c87,
              0x58684c11,
                            0xc1611dab,
                                                         0x76dc4190,
                                                                       0x01db7106,
                                          0xb6662d3d,
0x98d220bc,
              0xefd5102a,
                            0x71b18589,
                                          0x06b6b51f.
                                                         0x9fbfe4a5,
                                                                       0xe8b8d433.
0x7807c9a2,
              0x0f00f934,
                            0x9609a88e,
                                          0xe10e9818,
                                                         0x7f6a0dbb,
                                                                       0x086d3d2d,
0x91646c97.
              0xe6635c01.
                            0x6b6b51f4.
                                          0x1c6c6162.
                                                         0x856530d8.
                                                                       0xf262004e.
0x6c0695ed,
              0x1b01a57b,
                            0x8208f4c1,
                                          0xf50fc457,
                                                         0x65b0d9c6,
                                                                       0x12b7e950,
0x8bbeb8ea,
              0xfcb9887c,
                            0x62dd1ddf,
                                          0x15da2d49,
                                                         0x8cd37cf3,
                                                                       0xfbd44c65,
0x4db26158,
              0x3ab551ce,
                            0xa3bc0074,
                                          0xd4bb30e2,
                                                         0x4adfa541,
                                                                       0x3dd895d7,
0xa4d1c46d.
              0xd3d6f4fb.
                            0x4369e96a.
                                          0x346ed9fc.
                                                         0xad678846.
                                                                       0xda60b8d0.
0x44042d73,
              0x33031de5,
                            0xaa0a4c5f,
                                          0xdd0d7cc9,
                                                         0x5005713c,
                                                                       0x270241aa,
                            0x5768b525,
0xbe0b1010,
              0xc90c2086,
                                          0x206f85b3,
                                                         0xb966d409,
                                                                       0xce61e49f,
                                                        0x59b33d17,
0x5edef90e,
              0x29d9c998,
                            0xb0d09822,
                                          0xc7d7a8b4,
                                                                       0x2eb40d81,
0xb7bd5c3b,
              0xc0ba6cad,
                            0xedb88320,
                                          0x9abfb3b6,
                                                         0x03b6e20c,
                                                                       0x74b1d29a,
0xead54739,
              0x9dd277af,
                            0x04db2615,
                                          0x73dc1683,
                                                         0xe3630b12,
                                                                       0x94643b84,
0x0d6d6a3e,
              0x7a6a5aa8,
                            0xe40ecf0b,
                                          0x9309ff9d,
                                                         0x0a00ae27,
                                                                       0x7d079eb1,
                                                         0xf762575d,
0xf00f9344,
              0x8708a3d2,
                            0x1e01f268,
                                          0x6906c2fe,
                                                                       0x806567cb,
0x196c3671,
              0x6e6b06e7,
                            0xfed41b76,
                                          0x89d32be0,
                                                         0x10da7a5a,
                                                                       0x67dd4acc,
0xf9b9df6f.
              0x8ebeeff9.
                            0x17b7be43.
                                          0x60b08ed5.
                                                         0xd6d6a3e8.
                                                                       0xa1d1937e.
0x38d8c2c4,
              0x4fdff252,
                            0xd1bb67f1,
                                          0xa6bc5767,
                                                         0x3fb506dd,
                                                                       0x48b2364b,
0xd80d2bda,
              0xaf0a1b4c,
                            0x36034af6,
                                          0x41047a60,
                                                         0xdf60efc3,
                                                                       0xa867df55,
0x316e8eef,
              0x4669be79,
                            0xcb61b38c,
                                          0xbc66831a,
                                                        0x256fd2a0,
                                                                       0x5268e236,
0xcc0c7795,
              0xbb0b4703,
                            0x220216b9,
                                          0x5505262f,
                                                         0xc5ba3bbe,
                                                                       0xb2bd0b28,
0x2bb45a92,
              0x5cb36a04,
                            0xc2d7ffa7,
                                          0xb5d0cf31,
                                                         0x2cd99e8b,
                                                                       0x5bdeae1d,
0x9b64c2b0.
              0xec63f226.
                            0x756aa39c.
                                          0x026d930a.
                                                         0x9c0906a9.
                                                                       0xeb0e363f.
```



```
0x72076785,
             0x05005713,
                           0x95bf4a82.
                                        0xe2b87a14.
                                                      0x7bb12bae,
                                                                    0x0cb61b38,
0x92d28e9b,
             0xe5d5be0d,
                           0x7cdcefb7,
                                        0x0bdbdf21,
                                                      0x86d3d2d4,
                                                                    0xf1d4e242,
0x68ddb3f8,
             0x1fda836e,
                           0x81be16cd,
                                        0xf6b9265b,
                                                      0x6fb077e1,
                                                                    0x18b74777,
0x88085ae6,
             0xff0f6a70,
                           0x66063bca,
                                        0x11010b5c,
                                                      0x8f659eff,
                                                                    0xf862ae69,
0x616bffd3,
             0x166ccf45,
                           0xa00ae278,
                                        0xd70dd2ee,
                                                      0x4e048354,
                                                                    0x3903b3c2,
0xa7672661,
             0xd06016f7,
                           0x4969474d,
                                        0x3e6e77db,
                                                                    0xd9d65adc,
                                                      0xaed16a4a,
0x40df0b66,
             0x37d83bf0,
                           0xa9bcae53,
                                        0xdebb9ec5,
                                                      0x47b2cf7f,
                                                                    0x30b5ffe9,
0xbdbdf21c,
                           0x53b39330,
                                                                    0xcdd70693,
             0xcabac28a,
                                        0x24b4a3a6,
                                                      0xbad03605,
0x54de5729,
             0x23d967bf,
                           0xb3667a2e,
                                        0xc4614ab8,
                                                      0x5d681b02,
                                                                    0x2a6f2b94,
0xb40bbe37,
             0xc30c8ea1,
                           0x5a05df1b,
                                        0x2d02ef8d,
                                                              uint32_t size ) {
uint32_t crc_crc32 (uint32_t crc, const uint8_t *buf,
      (uint32_t i=0; i \le i \le i ++)
crc = crc32_tab [ (crc ^
                              buf [i ] )
return crc;
```


10. 选配附件

11. 更新记录

IIC +	117 17 #1	
版本	日期	状态/注释
版本 1.0	2023. 07. 18	首次发行
版本 1.1	2023. 10. 07	更新坐标系定义
版本 1.2	2023. 12. 14	增加附件说明
版本 1.3	2024. 04. 16	增加 201S-A&202S-A 系列
版本 1.4	2024. 06. 17	增加 CAN 参数指令
版本 1.5	2025. 01. 17	增加坐标系示意图,修正工作电压
版本 1.6	2025. 01. 23	调整表序图序